Mark Scheme (Results)
November 2023

Pearson Edexcel International GCSE
In Physics (4PH1) Paper 1P and Science Double Award (4SD0) Paper 1P

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2023
Question Paper Log Number P73427A
Publications Code 4PH1_1P_MS_2311
All the material in this publication is copyright
© Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a)	D (universe); A is incorrect because the Milky way is the name o B is incorrect because a nebula contains dust and C is incorrect because a solar system contains stars	galaxy and planets	1
(b)	D (newton per kilogram); A is incorrect because this is the unit of mass B is incorrect because this is the unit of force C is incorrect because this is the unit of the product	force and mass	1
(c)	C (the Moon has less mass than the Earth); A is incorrect because distance from the Sun has no gravitational field strength of the Moon/Earth B is incorrect because an atmosphere does not affect strength D is incorrect because a greater density would give field strength	effect on the gravitational field larger gravitational	1
(d)	moon orbits Earth/a planet and comet orbits Sun/star; moon's orbit is (almost) circular/slightly elliptical and comet's orbit is (very) elliptical;	marks may be awarded from a suitably labelled diagram allow comet's orbit is 'bigger'/takes more time allow oval for elliptical allow speed of moon is (almost) constant but speed of comet varies	2

Total for Question 1 = 5 marks

Question number	Answer		Notes	Marks
2	one mark for each correct row;;;;		reject if more than one letter given in a row	4
	Description	Graph		
	current directly proportional to time	P		
	current increasing at a decreasing rate	S		
	current has a linear relationship to time but is not directly proportional	Q		
	current decreasing at a decreasing rate	R		

Total for Question 2 = 4 marks

Question number	Answer	Notes	Marks
$3 \quad \text { (a) }$ (ii)	```wavelength in range 12-13 (cm) = 1 mark; wavelength = 12.5 (cm) = 2 marks;; substitution; conversion of 'G' to 10' or 1 billion; evaluation that would round to 3\times1\mp@subsup{0}{}{8}}\mathrm{ given to 2 or more s.f.; e.g. speed = 2.35 * 12.5 speed = 2.35 \times 109 \times 12.5(}\times1\mp@subsup{0}{}{-2} speed =2.9... }\times1\mp@subsup{0}{}{8}(\textrm{m}/\textrm{s}```	ecf value from (i) ignore units for this mark allow answer in range $2.8-3.1 \times 10^{8}(\mathrm{~m} / \mathrm{s})$ POT error scores 2 max.	2 3
(b)	internal heating of \{tissue/organs/body\};	ignore references to skin ignore references to burning, cell damage, mutation, cancer etc.	1

(d) (i)	substitution into $\mathrm{E}=\mathrm{I} \times \mathrm{V} \times \mathrm{t} ;$ rearrangement; evaluation;	allow if 1.5 V used for voltage ignore unit for time allow substitution into $\mathrm{P}=\mathrm{VI}$ and $\mathrm{P}=\mathrm{E} / \mathrm{t}$	3
e.g. $120=$ current $\times(3 \times) 1.5 \times 3.0(\times 60)$ current $=120 / 4.5 \times 180$ $($ current $=) 0.15(\mathrm{~A})$	$26.6 \ldots, 8.8 \ldots, 0.44 \ldots$ $=2$ marks		
(ii)	idea that current in wire produces a magnetic field;	ignore wire becomes magnetic	1

Total for Question $4=10$ marks

Question number	Answer	Notes	Marks
5 (a)	idea that there is a risk of burning from apparatus; wood is an insulator; wood will not get (as) hot;	allow prevents burns allow metal conducts heat (well) / metal gets hot allow wood does not conduct heat / wood is a poor conductor	3
(b)	idea that atoms in metal have vibrations; idea that vibrations increase in speed/amplitude (when metal is heated); idea that vibrations are passed (along the metal) between particles;	allow ions for atoms allow (free/delocalised) electrons in metal move around allow (free/delocalised) electrons move faster (when metal is heated) allow (free/delocalised) electrons collide with other electrons/atoms (along the metal)	3
(c) (i) (ii) (iii)	idea that metal is a discrete / categoric variable; repeat the measurements; calculate a mean / identify anomalies; copper/aluminium/brass are better conductors; (because) time taken (for tack to fall) is shorter / quicker;	allow not continuous, discontinuous variable allow repeat the experiment allow average for mean ignore student is wrong allow \{iron / it \} is not the best conductor allow (because) time taken (for tack to fall) is longer / slower	1 2 2

Total for Question 5 = 11 marks

Question number	Answer	Notes	Marks
6 (a) (i) (ii) (iii)	idea of acceleration = gradient; correct substitution; evaluation; e.g. acceleration = gradient acceleration $=3.0(-0) / 2.5(-0)$ acceleration $=1.2\left(\mathrm{~m} / \mathrm{s}^{2}\right)$ any reference to area; any attempt at area of triangle; correct area attempted; evaluation; e.g. distance $=$ area of triangle distance $=1 / 2 \times 3.0 \times 2.5$ distance $=3.8(\mathrm{~m})$	allow use of acceleration formula $\mathrm{a}=(\mathrm{v}-\mathrm{u}) / \mathrm{t}$ allow any pairs of values that lie on line allow answers that round to $1.2\left(\mathrm{~m} / \mathrm{s}^{2}\right)$ allow alternative method using $v^{2}=u^{2}+2 a s$ with ecf from (i) e.g. $3.0^{2}=\left(0.0^{2}+\right) 2 \times 1.2 \times s$ $\mathrm{s}=9.0 / 2.4$ allow 3.7, 3.75 (m)	3 1 3
(b)	evaluation of either $\left(15 / 5^{2}\right)$ or $\left(60 / 10^{2}\right)$; evaluation of second constant; comparison of the two values to conclude suggestion supported;	allow 0.6 or $3 / 5$ seen in working ignore constants calculated using data from graph	3

Total for Question $6=10$ marks

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
7 (a) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
proton; \\
protons increase \{by 1 / to 7\}; \\
neutrons decrease \{by 1 / to 7\};
\end{tabular} \& \begin{tabular}{l}
allow hydrogen (nucleus/atom), hydrogen 1 \\
ignore references to atomic number \\
ignore references to nucleon/mass number
\end{tabular} \& 2 \\
\hline \begin{tabular}{l}
(b) (i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
linear scales that take up \(\geq 50 \%\) of the grid for both axes; labelled axes with units; all points plotted correctly within \(1 / 2\) small square; \\
smooth curve within \(1 / 2\) small square of each point; \\
indication on graph from \(36 \%\) to curve; (age =) 8400 (years);
\end{tabular} \& \begin{tabular}{l}
ignore orientation of axes allow use of false origins allow no units on percentage axis \\
maining \\
ecf curve from (ii) allow 8200-8600 (years) allow within a small square of candidate's curve answer in allowed range scores both marks
\end{tabular} \& 3

1

1
2

\hline
\end{tabular}

(c) (i)	idea that tree contains more carbon- $14 /$ radioactive atoms than it would do normally / eq; (ii)	samples will appear younger; with any one from: - idea that trees absorb more carbon-14 (from the atmosphere); - more radioactive than 'normal'/before 1950; than it should be e.g. an underestimate	allow more carbon-14 in the wood allow more contaminated than 'normal'/before 1950

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline 8 (a) \& arrow pointing inwards, in direction from star to centre of galaxy; \& reject if contradicting arrows drawn \& 1 \\
\hline \begin{tabular}{l}
(b) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
any evidence of distance \(=\) (average) speed \(\times\) time; correct evaluation given to at least 2s.f.; \\
e.g. \\
\((\) distance \(=) 3.0\left(\times 10^{8}\right) \times 3.2\left(\times 10^{7}\right)\) \\
\((\) distance \(=) 9.6 \times 10^{15}\) \\
substitution into given formula; \\
rearrangement; \\
evaluation and presentation in standard form; \\
e.g. \\
\(220000=2 \times \pi \times\left(29000 \times 10^{16}\right) / T\) \\
\(\mathrm{T}=2 \times \pi \times\left(29000 \times 10^{16}\right) / 220000\) \\
\((\mathrm{T}=) 8.3 \times 10^{15}(\mathrm{~s})\)
\end{tabular} \& \begin{tabular}{l}
allow \(9.5 \times 10^{15}\) \\
ignore units \\
correct answer not in standard form = 2 marks e.g. \\
8300000000000000 \\
POT error in standard form \(=2\) marks e.g. \\
\(8.3 \times 10^{n}\) (s) \\
POT error not in standard form = 1 mark e.g. 830, 828, 0.83, 0.828 (s) etc. \\
allow 8.28... \(\times 10^{15}(\mathrm{~s})\) allow 7.9(5) \(\times 10^{15}(\mathrm{~s})\) (from use of \(9.6 \times 10^{15}\) for the light year)
\end{tabular} \& 2

3

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
\(9 \quad\) (a) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
uranium / U; \\
neutron absorbed by (parent) nucleus; nucleus splits; releasing (daughter) nuclei / neutrons; \\
fission process repeats;
\end{tabular} \& \begin{tabular}{l}
allow plutonium / Pu or any named isotopes of either
e.g. U-235, Pu-239 \\
allow named daughter nuclei e.g. krypton, barium etc. reject if reference to daughter nuclei splitting allow idea that chain reaction occurs
\end{tabular} \& 1
4 \\
\hline \begin{tabular}{l}
(b) \\
(i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
coil(s) rotate; coil(s) cut magnetic field of magnet(s); voltage is induced / eq; any one of: \\
- reduce the strength of the magnetic field; \\
- fewer coils; \\
- rotate slower / reduce speed; \\
- reduce the flow/speed/pressure of steam; \\
- reduce rate of fission / reactor output; \\
a.c. changes direction continuously / eq; d.c. has one direction;
\end{tabular} \& \begin{tabular}{l}
allow magnet(s) rotate ignore magnetic fields interacting allow current induced \\
ignore references to transformers allow weaker magnets allow remove some magnets allow less turns on coil(s) \\
allow lower/insert control rods
\end{tabular} \& 3
1
1

2

\hline
\end{tabular}

Total for Question $9=11$ marks

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
10 (a) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
\[
\text { voltage = current } \times \text { resistance; }
\] \\
substitution; rearrangement; evaluation; \\
e.g. \\
\(5.8=\) current \(\times 13\left(\times 10^{3}\right)\) \\
(current =) \(5.8 / 13\left(\times 10^{3}\right)\) \\
(current =) \(4.5 \times 10^{-4}(\mathrm{~A})\)
\end{tabular} \& \begin{tabular}{l}
allow standard symbols and rearrangements e.g. I = V / R condone ' i ' for current ignore 'c' or ' \(C\) ' for current \\
ignore units \\
-1 for POT error \\
allow \(4.46 \ldots \times 10^{-4}(\mathrm{~A})\) \\
allow 0.0004, 0.00045, 0.000446 ... (A) \\
condone 0.00044 (A)
\end{tabular} \& 1

3

\hline | (b) |
| :--- |
| (i) |
| (ii) | \& | correct ammeter symbol in series with $13 \mathrm{k} \Omega$ resistor; |
| :--- |
| $13 \mathrm{k} \Omega$ resistor: |
| - voltage remains the same; |
| - so current stays the same; |
| battery: |
| - total voltage remains the same; |
| - (circuit) resistance is reduced; |
| - (therefore) current through battery increases; | \& | allow current is (still) 0.000446... (A) |
| :--- |
| allow current flows in 200Ω resistor / additional path allow (total) resistance = 197 (Ω) |
| allow current through battery is sum of 2 currents allow (new) current = 0.0294...(A) | \& \[

$$
\begin{aligned}
& 1 \\
& 5
\end{aligned}
$$
\]

\hline
\end{tabular}

Total for Question $10=10$ marks

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline 12 (a) \& \begin{tabular}{l}
any five from: \\
MP1. chemical energy (store of student); \\
MP2. transferred mechanically; \\
MP3. (to) gravitational energy (store of marble); MP4. transferred mechanically; \\
MP5. (to) kinetic energy (store of marble); \\
MP6. idea that thermal energy (store of marble) increases; \\
MP7. idea that thermal energy (store) of marble run / surroundings increases; \\
MP8. energy transferred to surroundings by radiation;
\end{tabular} \& \begin{tabular}{l}
allow idea this is due to a lift force exerted by student \\
must be a clear second reference allow idea this is due to marble's weight \\
allow heat for thermal \\
allow heat for thermal \\
allow transferred/lost as sound
\end{tabular} \& 5 \\
\hline \begin{tabular}{l}
(b) (i) \\
(ii)
\end{tabular} \& ```
let marble roll across table for a known distance;
measure time taken;
use speed = distance / time;
OR
use of light gate;
connected to datalogger;
positioned so that (centre of) marble cuts
beam(s);
substitution into GPE formula;
evaluation of GPE;
substitution into KE formula;
evaluation of KE;
subtraction to find energy lost;
e.g.
GPE =0.0055 × 10 < 0.21
GPE = 0.01155 (J)
KE = 0.5 * 0.0055 * 0.762
KE = 0.0015884 (J)
energy lost = (0.01155-0.0015884 =)
0.010 (J)
``` \& \begin{tabular}{l}
allow measure distance travelled across table reject if linked to measuring time between \(A\) and \(B\) \\
allow use of device with two integrated light gates \\
ignore units allow use of \(g=9.8,9.81\) only penalise not converting \(g\) to kg once ignore units only penalise not converting \(g\) to kg once allow ecf from incorrect GPE and/or KE \\
10, 10.0, 9.96..., 9.7... (J) etc. scores 4 marks \\
allow 0.0113... \\
allow 0.00996..., 0.0097... (J)
\end{tabular} \& 3

5 <br>
\hline
\end{tabular}

Total for Question 12 = 13 marks

